Nanotechnology

Nanotechnology is a field of applied science and technology covering a broad range of topics. The main unifying theme is the control of matter on a scale smaller than 1 micrometre, normally between 1-100 nanometers, as well as the fabrication of devices on this same length scale. It is a highly multidisciplinary field, drawing from fields such as colloidal science, device physics, and supramolecular chemistry. Much speculation exists as to what new science and technology might result from these lines of research. Some view nanotechnology as a marketing term that describes pre-existing lines of research applied to the sub-micron size scale.
Despite the apparent simplicity of this definition, nanotechnology actually encompasses diverse lines of inquiry. Nanotechnology cuts across many disciplines, including colloidal science, chemistry, applied physics, materials science, and even mechanical and electrical engineering. It could variously be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term. Two main approaches are used in nanotechnology: one is a "bottom-up" approach where materials and devices are built from molecular components which assemble themselves chemically using principles of molecular recognition; the other being a "top-down" approach where nano-objects are constructed from larger entities without atomic-level control.

Origins
The first distinguishing concepts in nanotechnology (but predating use of that name) was in "There's Plenty of Room at the Bottom," a talk given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959. Feynman described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on down to the needed scale. In the course of this, he noted, scaling issues would arise from the changing magnitude of various physical phenomena: gravity would become less important, surface tension and Van der Waals attraction would become more important, etc. This basic idea appears feasible, and exponential assembly enhances it with parallelism to produce a useful quantity of end products.
The term "nanotechnology" was defined by Tokyo Science University Professor Norio Taniguchi in a 1974 paper (N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.) as follows: "'Nano-technology' mainly consists of the processing of, separation, consolidation, and deformation of materials by one atom or one molecule." In the 1980s the basic idea of this definition was explored in much more depth by Dr. K. Eric Drexler, who promoted the technological significance of nano-scale phenomena and devices through speeches and the books Engines of Creation: The Coming Era of Nanotechnology and Nanosystems: Molecular Machinery, Manufacturing, and Computation, and so the term acquired its current sense.

____________________________________________________________________
I'm Valeed, doing my PG (M.Sc - Chemistry) in The New college, Chennai. Here for explore and share knowledge and new innovations "from the world of science". It's my first blog.....

4 comments:

Unknown said...

good blog yar

Unknown said...

Great stuff! Keep up ur good work..

karthikeyan said...

nice work



clear your msc

ഒറ്റമൈന said...

very nice,go on.........

Ismail K